2018.6.12 陈韵梅 教授:Edge Based Joint Multi-contrast MR Image Reconstruction
发布时间:2018-06-11        浏览次数:202

报告题目: Edge Based Joint Multi-contrast MR Image Reconstruction

  人:陈韵梅 教授
  人:沈超敏 副教授
报告时间:2018612 周二 10:00-11:00



陈韵梅教授,现任Florida大学杰出教授。 曾获中华人民共和国国家自然科学三等奖、中华人民共和国教育部科技进步一等奖。最近五年来,陈韵梅教授主要致力于数学和图像科学这一交叉学科的研究。研究课题不仅包括图像分析中数学模型的建立与数值方法的发展,而且对其潜在的数学理论进行了进一步的探索。她在国际最顶尖成像期刊发表多篇具有重要影响的学术论文。陈韵梅教授被公认为偏微分方程与图像处理领域内的世界级科学家,在国际上具有崇高的学术地位。



We propose a new joint image reconstruction method by recovering edge directly from observed data, then reconstructing images with their edge information. For joint edge reconstruction our model minimizes the fidelity term together with the matrix Frobeniun norm or spectral norm or nuclear norm across the contrasts and L1 norm over the pixels. Derivation of data fidelity for the Jacobian of multi-contrast images and transformation of noise distribution are also detailed. The new minimization problem yields an optimal O(1/k2) convergence rate, where k is the iteration number, and the per-iteration cost is low thanks to the close-form matrix-valued shrinkage.

The numerical results indicate that the proposed method improves reconstruction efficient and accuracy compared to the state-of-the-arts.

中山北路3663号理科大楼 200062


Copyright 2019计算机科学与技术学院