您的位置: 首页  学术报告

Deep Approximation via Deep Learing

发布日期: 2019-07-06   浏览次数 26

报告题目:Deep Approximation via Deep Learing

报告人: 沈佐伟  教授  新加坡国家科学院院士, 新加坡国立大学

主持人: 沈超敏 副教授

报告时间:2019年7月6日   周六15:00-16:00

报告地点:理科大楼B1002


报告摘要:

The primary task of many applications is approximating/estimating a function through samples drawn from a probability distribution on the input space. The deep approximation is to approximate a function by compositions of many layers of simple functions, that can be viewed as a series of nested feature extractors. The key idea of deep learning network is to convert layers of compositions to layers of tunable parameters that can be adjusted through a learning process, so that it achieves a good approximation with respect to the input data. 

In this talk, we shall discuss mathematical foundation behind this new approach of approximation; how it differs from the classic approximation theory, and how this new theory can be applied to understand and design deep learning network.


报告人简介:

沈佐伟教授,新加坡国立大学理学院院长,陈振传百年纪念教授,新加坡国家科学院院院士,美国数学会会士(AMS  Fellow), 美国工业与应用数学会会士(SIAM Fellow)。主要研究领域为逼近与小波理论、时频分析、图像科学, 学习理论等。作为国际著名数学家,沈佐伟教授先后获得Wavelet Pioneer奖、新加坡国立大学杰出科学研究奖和新加坡科学成就奖,并受邀在2010年国际数学家大会和2015年国际工业与应用数学大会上作报告。